Молоток для проверки прочности бетона

Молоток Шмидта. Доверяй, но проверяй!

Сегодня будущие характеристики бетонной смеси в полной мере зависят от критериев её прочности. Поэтому в строительстве определение степени прочности бетонных конструкций является необходимой процедурой, на основании которой производиться вывод о соответствии материалов утверждённым стандартам. Так, к критериям прочности относят показатели растяжения, изгибов, сжатия, а также степень однородности бетонной смеси. Качественный бетон может успешно противостоять различным нагрузкам и отрицательному воздействию окружающей среды.

Методы проверки прочности бетона

На данный момент существует два основных метода определения прочности бетона: с помощью разрушающего либо неразрушающего контроля. Механические способы неразрушающего контроля основываются на взаимосвязи прочности бетона с прочими механическими свойствами, такими, как усилие при скалывании, сопротивление отрыву и твёрдость при сжатии. В зависимости от типа оцениваемого свойства применяются зачастую следующие способы неразрушающих испытаний:

  • отрыв;
  • пластическая деформация;
  • скол ребра;
  • упругий отскок.

Выбор способа испытаний зависит от размера и формы изделий, цели проводимых мероприятий, требований, выдвигаемых к точности полученных результатов и от степени удобства испытаний.
В мировой практике наибольшее распространение в определении прочностных характеристик получил прибор под названием молоток Шмидта. У нас его часто называют склерометром, что в переводе с греческого означает «измеритель твёрдости».

Молоток Шмидта был разработан в 1948 году швейцарским инженером Эрнстом Шмидтом. Именно молоток Шмидта впервые дал возможность измерить прочность бетонных конструкций на месте проведения строительных работ.

Принцип работы молотка Шмидта

Молоток Шмидта работает по принципу упругого отскока, который основан на измерениях поверхностей бетона на его твёрдость. Этот способ позаимствован из практики измерения степени прочности металла. Заключается он в воздействии ударами с помощью специального ударника по сферическому штампу, который предварительно прижимается к бетону.

Склерометр устроен таким образом, что после удара по бетону специальная система пружин позволяет ударнику осуществлять свободный отскок. При этом величина обратного отскока характеризует степень твёрдости оцениваемого материала. А с помощью установленной на прибор градуированной кривой вычисляется прочность бетона.

Конструкция молотка Шмидта включает в себя:

1 – ударный плунжер или индентор.

2 – бетонная поверхность, над которой проводят контроль прочности.

3 – корпусная часть.

4 – ползунок, оснащённый направляющими стержнями.

5 – конус корпусной части.

7 – шток бойка, обеспечивающий направление работы инструмента.

8 – шайба для установки бойка.

10 – кольцо для разъёма.

11 – задняя крышка инструмента.

12 – сжимающая пружина.

13 – предохраняющая часть конструкции.

14 – боек, имеющий определённую массу.

15 – пружина для фиксации.

16 – ударяющая пружина.

17 – втулка, направляющая работу молотка.

18 – войлочное кольцо.

19 – дисплейное окно, показывающее шкалу Шмидта.

20 – винт для сцепления.

21 – контрольная гайка.

23 – предохраняющая пружина.

В целом работа молотка основана на вычислении ударного импульса, который возникает при приложении нагрузки. Удар производят о твёрдую поверхность (бетон), без наличия металлической арматуры и замеряют высоту отскока бойка, дающую показание прочности бетона на сжатие.

Схема работы с молотком Шмидта заключается в следующем:

  • ударный механизм прибора приставляется к исследуемой поверхности;
  • двумя руками производиться плавный нажим на молоток по направлению к поверхности бетона до момента появления удара бойка;
  • после чего на шкале высвечиваются показания;
  • для более точных результатов показания снимаются 9 раз.

Измерения следует проводить на небольших участках, которые предварительно расчерчиваются на квадраты, каждый из которых, подвергается исследованию. Все показания прочности фиксируются, а затем сравниваются. Расстояние между ударами должно быть не менее 25 мм. Иногда полученные данные могут иметь определённые отклонения либо быть одинаковыми. По полученным результатам испытаний определяется среднее арифметическое. Если при испытаниях удар бойка произошёл на пустоте заполнителя, то такие данные не следует учитывать, а удар повторить в другом месте.

Разновидности молотка Шмидта

По своему принципу работы молоток Шмидта делиться на два подтипа:

  • устройство механического воздействия – имеет корпус конструкции в форме цилиндра, внутри которого размещается ударный механизм, состоящей из индикаторной шкалы со стрелкой и отталкивающей пружины. Подобный инструмент предназначен для определения показателя прочности бетона в пределах от 5 Мпа до 50 Мпа. Молоток Шмидта механического типа применяется при обследовании железобетонных либо бетонных конструкций;
  • устройство ультразвукового действия – оснащается встроенным либо внешним электронным блоком. Все получаемые во время измерения показания отображаются на дисплее и могут оставаться в памяти прибора в течение определённого периода времени. При желании молоток может подключаться к компьютеру благодаря дополнительному оснащению специализированными разъёмами и клавиатурой. Такой прибор способен диагностировать показатели, находящиеся в диапазоне от 5 Мпа до 120 Мпа. Предел памяти сохранения результатов предполагает возможность сохранения 1000 версий в течение 100 дней.

В зависимости от энергии удара молоток Шмидта подразделяется на типы:

  • МШ 20 – обладает наименьшим значением энергии удара (196 Дж). Прибор используется чаще всего при определении показателя прочности цементных растворов кирпичной кладки;
  • тип молотка РТ – 200-500 Дж. Используется для определения прочности свежего бетона в цементно-песчаной стяжке. Это молоток маятникового типа, производящий замеры как вертикально, так и горизонтально;
  • МШ 75 (тип L) – энергия удара обладает 735 Дж. В основном применяется, чтобы определить прочность бетонных изделий с толщиной менее 100мм и кирпича;
  • МШ-225 (тип N) – наиболее мощный молоток с энергией удара в 2207 Дж. Устройство предназначено для определения прочности бетонных конструкций с толщиной от 70 до 100 мм и более. Диапазон измерений находится в пределах от 10 до 70 МПа. На корпусе склерометра размещается таблица с тремя графиками.

Немного цифр

Каждый вид молотка Шмидта предназначен для конкретных целей. Основные области применения и характеристики каждой модификации прибора могут быть различными:

Предел диапазона прочности на сжатие бетона
От 1 МПа до 5 МПа От 5 МПа до 10 МПа От 10 МПа до 30 МПа От 30 МПа до 70 МПа От 70 МПа до 100 МПа >100 МПа
Свежий бетон с низкими показателями прочности Обычный бетон Бетон с высокими показателями прочности Бетон со сверхвысокой прочностью

Прочность бетонных конструкций на сжатие может выражаться в двух системах:

  • М (марка бетона) – обозначается от 50 до 1000 кг/см 2 . Максимально допустимым отклонением значения прочности считается 13,5%;
  • В (класс бетона) – определяет кубиковую прочность, показывающую величину давления в МПа.

Согласно утверждённым стандартам соответствие марки бетона его классу отображено в таблице.

Класс и марка бетона определяется только спустя 28 дней с момента заливки бетонной конструкции.

Показания шкалы в зависимости от класса и марки бетона может варьироваться в пределах:

Молоток Шмидта: принцип работы и инструкция по применению

Для проверки прочности бетона в качестве инструмента неразрушающего контроля применяют молоток Шмидта, изобретенный в 1948 году в Швейцарии. Инженер Э. Шмидт (E. Schmidt) снабдил своё изобретение способностью точно выявлять механические показатели прочности бетона:

  • твердость при сжатии;
  • растяжимость;
  • сопротивление отрыву;
  • сопротивление изгибу;
  • усилие при скалывании.
Читайте также  Как провести дымоход через деревянное перекрытие

Применение бетона, устойчивого к механическим воздействиям и агрессивным средам — залог долговечности и прочности зданий. Поэтому в строительстве придают огромное значение тестированию бетона на прочность.

Из чего состоит склерометр?

Термин «склерометр» означает «измеритель твердости». Конструктивно прибор состоит из 22 элементов. Кроме индентора (ударный плужнер) и корпуса прибор включает в себя:

  • конус корпуса;
  • направляющие стержни с ползунком;
  • кнопку, исполняющая функцию штопора;
  • боек с заданной массой;
  • направляющие движения индентора шток бойка;
  • шайбу для фиксации бойка;
  • колпачок;
  • заднюю крышку склерометра;
  • войлочное кольцо.

Некоторые модели доукомплектовывают предохранителем и контрольной гайкой, а также 4 пружинами (сжимающая, ударяющая, предохраняющая, фиксирующая). Обязательно присутствуют сцепляющий винт, штифт, шкала Шмидта, дисплей.

Принцип работы молотка Шмидта

Исправный склерометр Шмидта показывает прочность бетона при совершении по его поверхности удара с последующим упругим отскоком. Насколько тестируемый бетон устойчив к разрушающим механическим воздействиям, оказывается известно из статистических данных.

Прибор измеряет ударный импульс, возникающий при приложении к твердой поверхности тестируемого объекта механической нагрузки. Упрощенно алгоритм работы прибора выглядит так:

  • ударный плужнер (индентор) прижимается к поверхности бетона, где нет металлических частей (арматуры);
  • за счет пружины индентор ударяет по тестируемой поверхности;
  • система четырех пружин выполняет возврат ударника (плужнера) в исходное положение посредством свободного отскока.

Виды склерометров

Степень прочности бетона на сжатие показывается на цифровой шкале. Цифра характеризует отскок бойка на определенную высоту. Чем отскок сильнее, тем тверже бетон.

Есть несколько типов молотка Шмидта — различаются по принципу функционирования (механическое или ультразвуковое воздействие на испытуемый объект). Вторая распространенная классификация основана на использовании энергии удара, измеряемой в Дж.

Приборы механического и ультразвукового действия

Устройство механического типа, предназначенное для исследования железобетонных или бетонных конструкций, выглядит как цилиндр с помещенным внутрь ударным механизмом из отталкивающей пружины, индикаторной шкалы, бойка.

Чувствительность прибора — от 5 до 50 Мпа.

Электронный молоток Шмидта ультразвукового действия оснащаются электронными блоками двух видов:

  • встроенный;
  • внешний.

Такая конструкция прибора предпочтительнее. Во-первых, результаты не нужно фиксировать – они сохраняются в памяти блока на 100 суток. Предельный резерв памяти — 1000 показаний. Молоток пригоден для подключения к компьютеру за счет специальных портов и разъемов.

Чувствительность электронной модификации значительно выше, чем у механического аналога. Прибор распознает прочность в диапазоне от 5 Мпа до 120 Мпа.

Классификация по энергии удара

По силе удара различают 4 основных модификации склерометра:

  • 1 модификация — наименее «мощный» МШ 20. Значение энергии удара не превышает 196 Кдж.
  • 2 модификация –маятникового типа РТ, работающий в 2 плоскостях. Мощность удара — от 200 до 500 КДж;
  • 3 модификация — МШ 75 (тип L). Сила удара равна 735 КДж;
  • 4 модификация — МШ-225 (тип N). Самый мощный вариант из всех — с энергией удара до 2207 Дж и чувствительностью от 10 до 70 МПа.

Приборы разной мощности и назначение имеют разное. МШ 20 измеряет прочность раствора для кирпичной кладки, РТ необходим для измерений прочности только что уложенного в виде цементно-песчаной стяжки. МШ-225 (тип N) предназначен для замера прочности кирпича и бетона толщиной до 100 мм. Цель использования МШ 75 (тип L) — определение надежности стен толщиной не менее 70 мм.

Молоток Шмидта: инструкция по применению

Начинают испытание с выбора подходящего участка на поверхности объекта. Затем прибор ударным механизмом прижимается к участку исследуемого объекта.

Плавный нажим выполняют сразу двумя руками — до появления звука удара бойка о поверхность.

После удара на шкале появляется числовое значение показателя твёрдости.

Взаимосвязь между силой сжатия на бетон и его прочностью следующая:

  • наименее прочный свежий бетон выдерживает давление от 1 до 10 Мпа;
  • обычный, застывший, бетон — от 10 до 70 Мпа;
  • отвердевший раствор разрушается при сжатии от 70 до 100 Мпа;
  • сверхпрочный выдерживает сжатие более 100Мпа.

Чтобы ручной измеритель показал достоверный результат, выполните не менее 9 измерений с минимальным расстоянием между пробами в 25 мм.

«Технические хитрости»

Чтобы случайно не протестировать один участок дважды, поверхность бетона маркируют — например, рисуют 9 квадратов.

Каждый бетонный квадрат замеряют, фиксируя результат для последующего анализа. Измерение не засчитывается (подлежит повтору на другом участке), если боек ударил по поверхности, скрывающей пустоту.

Все 9 проб могут быть идентичными по величинам или немного расходиться. Анализ данных строится на выведении среднего арифметического из результатов по 9 ударам.

Не применяйте прибор в сложных условиях, изменяющих характеристики материала (повышенные / пониженные температуры, воздействие механических, термических или химических агентов).

Немного цифр

Бетонные конструкции по истечении 28 суток после заливки показывают разную твердость при сжатии (максимальная погрешность не превышает 13.5%). Твердость зависит от класса и марки строительного материала:

Таблица.1 Среднее значение прочности экспериментального образца бетона в виде куба со стороной 15 см на сжатие в зависимости от марки и класса.

Склерометры (измерители прочности бетона)

Найдено 7 товаров

Категория

Погрешность электронных измерителей прочности бетона колеблется от 7 до 20 %, в зависимости от модели. Чем точнее прибор, тем, как правило, выше его стоимость. Поэтому, чтобы не переплачивать лишнего, перед покупкой, определитесь какой точности измерений будет достаточно в Вашем случае. «,»sort»:10,»additional»:false>,<"data":<"rangeMetadata":<"minValue":0.22,"maxValue":1.5,"currentFromValue":0.22,"currentToValue":1.5,"step":0.1,"unit":"кг","active":true>>,»id»:200777,»type»:»specification»,»label»:»Вес»,»description»:null,»sort»:12,»additional»:false>],»booleanFilters»:[<"data":<"value":<"selected":false,"active":true>>,»id»:null,»type»:»has_review»,»label»:»Только с отзывами»,»description»:null,»sort»:8,»additional»:false>],»productCount»:3,»queryString»:»»>» data-category-id=»3081″ data-category-name=»Склерометры (измерители прочности бетона)» data-bowed-category-name=»в Склерометрах (измерителях прочности бетона)» data-rname=»izmeriteli-prochnosti-betona» data-tag-page-id=»» data-make-id=»0″ data-search-string=»» data-reset-link=»/instrument/izmeritelnyj/pribory-nerazrushayuschego-kontrolya/izmeriteli-prochnosti-betona/» data-ab-is-expanded-filters=»» >

  • 10
  • 25
  • 50

Габариты: 54х280 мм

Измерение: бетонных сооружений, карпичной или каменной кладки

Диапазон измерения прочности: 10-60 МПа

Габариты: (ДхДиам) 280х43 мм

Диапазон измерения прочности: 10-60 МПа

Габариты: 54х280 мм

Измерение: бетонных сооружений, карпичной или каменной кладки

Диапазон измерения прочности: 10-60 МПа

Габариты: 364х68х55 мм

Диапазон измерения прочности: 10-60 МПа

Габариты: 200х170х50 мм

Диапазон измерения прочности: 3.5-100 МПа

Габариты: 170х75х35 мм

Диапазон измерения прочности: 3.5-100 МПа

Габариты: (Длина х Диаметр) 280х43 мм

Диапазон измерения прочности: 10-60 МПа

Склерометры используются для определения прочности бетонных, железобетонных и кирпичных конструкций. Они позволяют проверить соответствие характеристик материалов требованиям ГОСТа без разрушения структуры основания методом импульсного воздействия. Это незаменимые устройства для контроля качества строительных объектов, а также опытных образцов раствора.

Устройство и принцип работы

Склерометры состоят из корпуса цилиндрической или пистолетной формы, ударного механизма с пружинами и бойком, цанги и идентора. Прочность бетона на сжатие определяют следующим образом: выставляется высота удара бойка, прибор прикладывают к основанию под углом в 90 градусов и нажимают спусковой курок. В результате удара боек отскакивает, и высота отскока фиксируется измерительным устройством. У механического прибора полученные данные можно увидеть на цифровой шкале с бегунком, а электронный — имеет дисплей. Значение высоты отскока является косвенной характеристикой прочности материала.

Сантехник .

Телефон Сантехника 8 (495) 235-25-21, 8 (963) 626-40-67

среда, 31 марта 2021 г.

Молоток Шмидта (Склерометр) — назначение, виды, инструкция по применению

  • Твердость при сжатии;
  • Растяжимость;
  • Сопротивление отрыву;
  • Сопротивление изгибу;
  • Усилие при скалывании.
Читайте также  Пароизоляция чердачного перекрытия по деревянным балкам
Конструктивно включает в себя (см. рисунок): 1. ударный плунжер или индентор; 2. бетонная поверхность, над которой проводят контроль прочности; 3. корпус; 4.ползунок, оснащённый направляющими стержнями; 5. конус корпусной части; 6. кнопка-стопор; 7. шток бойка, обеспечивающий направление работы инструмента; 8. шайба для установки бойка; 9. колпачок; 10. кольцо для разъёма; 11. задняя крышка инструмента; 12. сжимающая пружина; 13. предохраняющая часть конструкции; 14. боек определенной массы; 15. пружина для фиксации; 16. ударяющая пружина; 17. втулка, направляющая работу молотка; 18. войлочное кольцо; 19. индикатор шкалы Шмидта; 20. винт для сцепления; 21. контрольная гайка; 22. штифт; 23. предохраняющая пружина

  • Ударный плужнер (индентор) прижимается к поверхности бетона, где нет металлических частей (арматуры);
  • За счет пружины индентор ударяет по тестируемой поверхности;
  • Система четырех пружин выполняет возврат ударника (плужнера) в исходное положение посредством свободного отскока.

  • Возможность обмена данными с компьютером;
  • Удобное управление и настройка прибора при помощи кнопок и интерфейса;
  • Выключение при длительном перерыве в использовании;
  • Память для сохранения измерений;
  • Озвучивание процесса работы;
  • Автоматическое изменение волн;
  • Возможность поиска дефектов и трещин.
  • Способность записи измерений;
  • Возможность перевода показателей на ПК;
  • Функция сортировки измеренных данных;
  • Изменение направления ударного воздействия .
  • Возможность работы при температуре – 40°;
  • Низкая стоимость;
  • Высокая погрешность;
  • Большой вес.
  • Тип N — Энергия удара — 2,207 Нм. Значения отскока считываются со шкалы для последующего расчета среднего значения. Значения прочности на сжатие могут считываться с диаграммы преобразований.
  • Тип L — Энергия удара — 0,735 Нм. Модель с энергией удара в три раза меньшей, чем у модели N. Модель отличается меньшей энергией удара, используется для тонкостенных объектов толщиной от 50 до 100 мм или для контроля малогабаритных объектов (как вариант, изделий из искусственного камня или кернов).

  • Наименее прочный свежий бетон выдерживает давление от 1 до 10 Мпа;
  • Обычный, застывший, бетон — от 10 до 70 Мпа;
  • Отвердевший раствор разрушается при сжатии от 70 до 100 Мпа;
  • Сверхпрочный выдерживает сжатие более 100Мпа.

Таблица %1 Среднее значение прочности экспериментального образца бетона в виде куба со стороной 15 см на сжатие в зависимости от марки и класса
  • Погрешность измерений. Самая большая погрешность у механических моделей. Она обычно не указывается, но зачастую достигает 20%. А также у механических моделей наибольшая периодичность поломок. Для электронных этот показатель составляет 5%, а наименьший у ультразвуковой аппаратуры: 1%.
  • Рабочий интервал прочности. У механических аппаратов он составляет 60 МПа, у электронных – 100. У ультразвуковых интервал изменяется по времени и скорости.
  • Комфорт эксплуатации. Механическим аппаратом пользоваться менее удобно из-за отсутствия сохранения результатов и большого веса (1 кг).
  • Цена. В этом показателе все наоборот: самым дорогим является ультразвуковой прибор.


Определение прочности бетона молотком Кашкарова

Это отдельный способ определения прочности бетона среди других методов пластической деформации. Эталонный молоток Кашкарова пользуется популярностью из-за удобства его использования, ведь полученные данные можно быстро сопоставить по таблице с эталонным образцом бетона.

Испытание бетона молотком Кашкарова приобрело наибольшую популярность среди инженеров, т.к. он весьма прост в использовании, удобен и дает не меньшую точность при испытаниях, чем более сложные и громоздкие приборы.

Принцип действия молотка Кашкарова

Проводя исследования прочностных характеристик бетона, нам следует не только понимать процесс испытания, но и подготовить все необходимые инструменты для замера образца и помещения его в испытательные условия. Итак, для того, чтобы произвести испытания нам понадобятся:

1) Непосредственно сам эталонный молоток Кашкарова

2) Штангенциркуль для измерения отверстий

3) Эталонный стальной стержень (d=1 см)

4) Специально подготовленные для испытания кубы из бетона со стороной 10см

Но прежде, чем перейти к описанию процесса испытания, предлагаем определить преимущества определения прочности бетона молотком Кашкарова перед методами неразрушающей проверки.

Итак, давайте рассмотрим, к примеру, работу гидравлического пресса.

Как мы знаем, основным критерием прочности бетона является максимальный прочностной предел при сжатии. Определить эту прочность можно как раз с помощью гидравлического пресса, способного в точности воссоздать давление на бетон, которое будет присутствовать в реальных условиях эксплуатации. Но и у этого устройства есть множество недостатков, среди которых особенно выделяются три:

1) Мы не можем точно воссоздать окружающую среду строительной площадки, поэтому мы не знаем, как будут зависеть от ее изменения прочностные характеристики бетона.

2) Зависимость прочностных характеристик бетона от расположения непосредственно в самой конструкции, приводит к тому, что, проводя испытания на гидравлическом прессе, мы не можем имитировать точную нагрузку по зонам.

3) Важную роль играют нагрузки на монолит в действующих конструкциях, а мы не сможем пересчитать несущую способность сооружений на реконструкции, уже введенных в эксплуатацию.

Все эти минусы способен нивелировать только динамический метод испытаний бетона, и один из самых востребованных среди них, как мы уже говорили ранее, – это молоток Кашкарова.

И тут налицо у нас ряд преимуществ этого метода перед всеми прочими:

· Испытание не требует лабораторных условий

· Погружение штампа в бетон происходит за счет удара

· Наличие таблиц для установки точных прочностных характеристик.

· Устройство молотка позволяет получать точные данные вне зависимости от приложенной силы.

Молоток Кашкарова интересен тем, что при проведении испытания любым другим механическим молотком верных показаний можно достичь только при одинаковой силе удара, и для этого нам регулярно нужно проводить проверки состояния их пружин.
А как же нам провести точное испытание с одинаковой силой удара? Все просто: нам и не нужно применять одинаковую силу удара. Отпечаток, который мы измеряем, остается не только на бетоне, но и на эталонном стержне, прочностные характеристики которого нам известны, поэтому установить соотношение этих характеристик легко, а полученные данные будут точными. И это нам дает полную независимость от силы удара при работе с молотком Кашкарова.

А провести необходимые испытания достаточно просто: по конструкции, которую нам необходимо исследовать, мы наносим несколько ударов. Сила удара должна быть такой, чтобы мы смогли получить удобно измеряемые отпечатки. Это позволит нам провести эксперимент с достаточной точностью. Расстояние до каждого следующего отпечатка не должно быть меньше 3 см, а расстояние до края конструкции не должно быть меньше 5 см. Эталонный стержень также необходимо передвигать на 1 см после каждого удара.

Диаметр измеряем при помощи штангенциркуля или подобных приспособлений, дающих точность до 0,1 мм.