Проводит ли бетон электрический ток?

Бетон электропроводящий

Большое внимание уделяется в настоящее время не только исследованию физико-механических свойств бетона, но и его электротехническим характеристикам, разработке состава с заранее заданными электрическими характеристиками.

Если будет найден путь превращения бетона в электропроводящий материал, это приведет к революционным изменениям в строительстве и электроэнергетике.

Деление материалов на конструктивные и электротехнические всегда существовало во всех отраслях техники. Объяснить это можно тем, что известные электротехнические материалы из-за специфических физико-механических свойств, как правило, невозможно было использовать как конструктивные.

Обычный бетон при определенной температуре и влажности обладает способностью проводить электрический ток, но это его качество не является стабильным. Помимо этого, в большинстве случаев электропроводность обычного бетона приносила только вред, так как под воздействием блуждающих токов сильно повышалась коррозия арматуры в железобетонных изделиях.

Эту способность пытались использовать для заземления строительных конструкций, эксплуатирующихся под воздействием электрического тока. Но такое использование бетона возможно только в том случае, если он будет стабильным электропроводником, тогда как сезонные колебания температуры и влажности изменяло электрическое сопротивление бетона в 5-10 раз. Объясняется это тем, что насыщение бетона водой приводит к переходу легкорастворимых компонентов цементного камня в жидкую фазу и бетон становится полупроводником. Соответственно высушивание бетона приводит к резкому падению проводимости.

Улучшить электрические свойства бетона предлагалось разными способами, большинство из которых должно было воспрепятствовать проникновению влаги внутрь бетона или уменьшить ее воздействие. Во Франции был придуман, так называемый, «изоляционный бетон Ламберта», который приготавливался на водных битумных эмульсиях. Битум, заполняя поры в теле бетона, затруднял его увлажнение, стабилизируя электрическое сопротивление. Для повышения электросопротивления бетона, используемого для изготовления железобетонных шпал, в состав его вводили ионно-обменные смолы, которые связывали появляющиеся при увлажнении бетона свободные ионы, что приводило к снижению электропроводности жидкой фазы бетона, и всего материала в целом. Также, высказывались предложения полностью заменить цементную связку на полимерную, чтобы получить изоляционный бетон. Но до сих пор, попытки использовать проводящие свойства бетона во влажном состоянии не имели большого успеха.

В основу нынешних научных исследований положен совершенно другой принцип получения как токопроводящих, так и изоляционных бетонов:

  • для изоляционных бетонов ведется комплексное изучение свойств компонентов цементного вяжущего и различных их сочетаний, чтобы выделить те из них, которые в наибольшей степени близки к диэлектрикам, изучение роли пористости бетона.
  • для электропроводящих бетонов ведутся изыскания токопроводящих добавок в бетонную смесь, которые изменят свойства бетона в сторону повышения электропроводности. На этой основе ведутся попытки создать композиционный материал — специальный бетон с характерными качествами проводника электрического тока.

В результате исследовательских работ был создан электропроводящий бетон, который назвали бетэлом. Бетэл наряду со стандартными конструктивными свойствами обладает способностью проводить электрический ток. Предварительные исследования прочностных и электрических свойств бетэла показали, что он может быть получен с большим диапазоном электрических и механических свойств. Бетэл может найти широкое применение для изготовления панелей стен и перекрытий, полов, кровель с внутренним водостоком, фундаментов опор линий ЛЭП и так далее.

Как любой проводник при прохождении тока, бетэл нагревается, что позволит применять его для создания электроотопительных элементов строительных сооружений. В качестве нагревательных элементов можно будет использовать обычные стеновые панели и плиты межэтажных перекрытий. Конструкции из электропроводящего бетона позволят отказаться от сложных существующих систем отопления, позволят предложить множество принципиально новых решений, приведут к снижению эксплуатационных расходов, особенно в условиях холодного климата.

Планово-предупредительный ремонт — ППР – это комплекс мероприятий по надзору, обслуживанию и ремонту, которые регулярно проводятся по заранее составленному плану. Система ППР позволяет предупредить преждевременный износ технологического оборудования, вовремя его отремонтировать, предупредив аварии, постоянно поддерживать его в эксплуатационной готовности.

Проводит ли бетон электрический ток?

КАЧЕСТВЕННО

БЫСТРО

SEO оптимизация

адаптивная верстка

Ремонт в регионах

  1. Главная
  2. Строительные материалы
  3. Гидротехнический бетон
  4. Защита бетона от разрушения

Временное сопротивление бетона разрыву гораздо меньше, чем на сжатие; для ориентировочных расчетов труб, резервуаров и т. п. может служить сравнительная табл. 1, составленная на основании опытов и показывающая зависимость между прочностью на сжатие и разрывом. Из указанной таблицы видно, что прочность бетона на разрыв увеличивается в меньшей степени, чем на сжатие.

Содержание

  • Химическая стойкость бетона
  • Химическое влияние на бетон дымовых газов
  • Защитные мероприятия для бетона
  • Воздухонепроницаемость
  • Стойкость против изнашивания
  • Проводит ли бетон электрический ток
  • Огнестойкость бетона
  • Усадка бетона

Химическая стойкость бетона

Под влиянием химического воздействия некоторых веществ бетон может разрушаться с поверхности, а в дальнейшем и по всей массе. В бетоне разрушается только одна составная часть — затвердевшее цементное тесто (или т. н. цементный камень) в силу особенностей его химического состава. Все разрушения происходят только в присутствии влаги, по большей части под непосредственным влиянием вымывающей воды или другой жидкости.

Табл. 1. Зависимость временного сопротивления на разрыв и на сжатие бетона

Временное сопротивление в кг/см2 Отношение Rсж/Rразр
Rсж Rразр
70 7,7 9
140 14,0 10
210 19,2 11
280 23,8 12
350 28,0 12,5
420 32,2 13
490 36,4 13,5
560 40,6 14

Вредные газы могут оказывать вредное влияние только на сырой бетон. Свежий менее устойчив против всех химических влияний, чем твердевший продолжительное время. Все основания (химические) и щелочи не оказывают вредного влияния, т. к. портландцемент вследствие выделения извести при гидролизе сам обладает щелочной реакцией.

Однако цемент с большим содержанием алюминатов может разрушаться и от сильных щелочей. Все кислоты (за исключением чистой щавелевой кислоты, которая с известью образует нерастворимые соли) разрушают бетон, т. к. образуют с известью цемента растворимые и иногда разбухающие соли. Опаснее всего серная, соляная и азотная кислоты, от которых бетон можно защищать только конструктивными мероприятиями, т. е. изолируя от непосредственного соприкосновения с ними.

Однако соляная кислота и хлористый кальций, прибавленные к портландцементу в количестве 2

6% по весу, даже полезны, т. к. они ускоряют твердение. Немного менее опасны углекислота, сернистая и другие неорганические кислоты. Под влиянием углекислоты сначала происходит карбонизация извести (полезная для прочности), но затем образуется кислый углекислый кальций, легко растворимый и вымываемый водой.

Разрушение бетона серной кислотой и всеми сернокислыми солями происходит потому, что серная кислота образует с известью цемента гипс или с его глиноземом сильно кристаллизующуюся (с большим количеством воды) двойную соль — сульфоалюминат кальция (т. н. цементная бацилла). При кристаллизации она сильно расширяется в объеме, разрушая бетон. Проникающая в него вода вымывает растворимый сульфоалюминат кальция и вызывает окончательный распад.

Из неорганических солей на бетон вредно влияют сульфаты, сульфиты и сульфиды даже в слабых растворах, в особенности, если они часто обновляются. Считается опасным содержание S03 более 300 мг на 1 л воды. В практике чаще всего встречается сульфат калия, натрия (глауберова соль), магния, кальция (гипс) и аммония.

Все другие растворимые соли аммония также оказывают вредное влияние. Из хлоридов неопасны хлористый натрий NaCl (поваренная соль); наоборот, опасны хлористый магний, хлористый аммоний (нашатырь), хлористая ртуть (сублимат) и хлористый кальций.

Из нитратов разрушает аммониевая селитра (удобрение), в то время как остальные (известковая, калийная и натриевая селитра) не вредны. Карбонаты (например углекислый натрий — сода) и силикаты (натриевое и калиевое жидкое стекло) безвредны, также и фтористые соли; последние служат даже для уплотнения.

Все аммониевые соли вредны, например сернокислый аммоний, солянокислый аммоний (нашатырь). Все органические кислоты по большей части вредны для, но в меньшей степени, чем сильные неорганические кислоты. Поэтому здесь достаточны защитные мероприятия в виде плотного бетона, применения цементов, бедных известью, и штукатурки.

Чаще всего встречаются следующие органические кислоты: молочная (силосные башни), уксусная, дубильная, винная (вино и пиво); в этих условиях следует принимать особые меры защиты также потому, что со временем он может оказывать влияние на чистоту и вкус жидкостей (это особенно относится к вину).

Такими мерами защиты служит покрытие резервуаров стеклянными плитками, парафином или штукатурка жидким стеклом. Алкоголь отнимает от бетона воду, приостанавливает твердение и часто вызывает неплотность.

Все масла и жиры (животные и растительные) оказывают сильное вредное влияние на бетон вследствие того, что жирные кислоты образуют с известью цемента легкорастворимые соли.

Напротив, минеральные масла и смолы (нефтяные продукты и получаемые путем перегонки угля) не вредны, так как они обычно свободных кислот не содержат. Сюда принадлежат нефть, газолин, бензин, бензол, смазочные масла, мазут, парафин, смолы и т. п.

При устройстве резервуаров для легких продуктов, например керосина, легко проникающих через бетон, требуется принятие особых мер, например устойчивой штукатурки жидким стеклом. Однако ни в коем случае нельзя допускать попадания нефти или масел в бетонную массу при затворении ее. Чистая вода не оказывает химического влияния, но в случае проникания через него (в особенности под давлением) она может растворять и уносить свободную известь, выделяемую цементом при твердении, ослабляя тем его.

Читайте также  Уход за бетоном в летнее время

Поэтому от действия на бетон чистой воды необходима защита, как и от минерализованной воды. Влияние морской воды определяется содержанием в ней растворенных солей, из которых вредное влияние оказывают хлористый магний MgCl2 и сульфат магния MgS04. Разрушение от морской воды происходит в силу образования гипса или сильно разбухающего сульфоалюмината кальция.

Не меньшее, зачастую даже большее влияние на разрушение оказывают физические и механические причины: мороз, удары волн, ледоход. Поэтому наряду с созданием плотного бетона и выбором соответствующего сорта цемента необходимо применение конструктивных мер.

Исследования показали, что большое влияние в море оказывают биологические факторы — растительные и животные обрастания. Предварительными опытами установили что бетонные массивы, подвергающиеся животному обрастанию, разрушаются химически; наоборот, растительные обрастания предохраняют его от разрушения.

Разрушение связано с выделением животными свободней углекислоты. Т. к. свежий бетон особенно сильно поддается действию разрушающих влияний, целесообразно применение заранее выдержанных бетонных блоков. Для работ в морской воде рекомендуются цементы, бедные известью. В случае применения портландцемента необходимо добавление пуццоланы; хороший бетон должен иметь

Электропроводящий бетон

Владельцы патента RU 2665324:

Изобретение относится к строительству и электроэнергетике и, в частности, к области создания композиционных материалов на основе природного и техногенного сырья с получением электропроводящего бетона, обладающего электропроводностью и удельным сопротивлением, достаточным для того, чтобы использовать материал в качестве электропроводящего конструкционного и нагревательного конструкционного материала, а также изготовления элементов заземляющих устройств и антистатических полов. Электропроводящий бетон включает портландцемент, песок, воду и углеродсодержащий компонент, в нем дополнительно используют золу уноса и гиперпластификатор, при следующем соотношении компонентов, мас.%: портландцемент 10-14; песок 14-19; зола уноса 13-18; углеродсодержащий компонент 11,8-15,8; гиперпластификатор 0,2; вода 42. При этом в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства. Кроме того, все сухие компоненты подвергают механохимической активации в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг. Технический результат — оптимизация регулирования структурообразования и гомогенизация многокомпонентной системы, а также снижение стоимости конечной продукции, энерго- и ресурсоемкости производства. 1 з.п. ф-лы, 2 табл.

Изобретение относится к строительству и электроэнергетике и, в частности, к области создания композиционных материалов на основе природного и техногенного сырья с получением электропроводящего бетона, обладающего электропроводностью и удельным сопротивлением, достаточным для того, чтобы использовать материал в качестве электропроводящего конструкционного и нагревательного конструкционного материала, а также изготовления элементов заземляющих устройств и антистатических полов.

Известен резистивный композиционный материал, состоящий из компонентов: быстротвердеющий цемент – в весовом проценте 34-56; крупнодисперсная фракция шамота с размером частиц 0,15-2,5 мм – в весовом проценте 1-35; кварцевый песок, фракция 0,2-2,5 мм – в весовом проценте 1-34; коллоидный графит – в весовом проценте 3-15; мелкодисперсная фракция шамота с размером частиц от 0,05 до 0,09 мм — в весовом проценте 0,1-15; электрокорунд, фракция 0,1-0,5 мм – в весовом проценте от 0,1 до 20; минеральное волокно длиной от 3 до 10 мм – в весовом проценте от 0 до 5 (см. патент РФ № 2231845, МПК H01C7/00, 2004 г.).

К недостаткам данного материала относятся сложная рецептура и высокая цена большинства компонентов.

Известны составы электропроводящего бетона, которые включают 1-20% портландцемента, 18-85 % золы и воду (см. патент US6461424 В1, 2002 г.).

Недостатком такого материала является низкий предел прочности на сжатие – 8,3 МПа.

Наиболее близким, принятым за прототип, является электропроводящий бетон, содержащий цемент, песок, воду и порошкообразный графит, при следующем соотношении, мас.%:

порошкообразный графит 15-35
цемент 20-30
песок 25-45
вода остальное

(см. патент РФ № 2291130, МПК C04B28/04; C04B111/94, 2007 г.).

Недостатками электропроводящего бетона являются низкие прочностные характеристики, сложность регулирования структурообразования и гомогенизации многокомпонентных систем, наличие ограниченной формы конечной продукции, что сужает спектр применения изделий и систем на их основе.

Предлагаемое изобретение решает задачу увеличения сырьевой базы для производства электропроводящих бетонов с широким диапазоном потребительских свойств.

Технический результат, который достигается при решении поставленной задачи, выражается в оптимальном регулировании структурообразования и гомогенизации многокомпонентной системы как за счет применения в составе бетонной смеси углеродных веществ, так и за счет совместного помола компонентов, а также снижении стоимости конечной продукции за счет использования в составе бетона техногенных отходов, что позволяет снизить энерго- и ресурсоемкость производства.

Поставленная задача решается тем, что электропроводящий бетон, включающий портландцемент, песок, воду и углеродсодержащий компонент, отличается тем, что в нем дополнительно используют золу уноса и гиперпластификатор, при следующем соотношении компонентов, мас.%: портландцемент 10-14; песок 14-19; зола уноса 13-18; углеродсодержащий компонент 11,8-15,8; гиперпластификатор 0,2; вода 42.

При этом в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства. Кроме того, все сухие компоненты подвергают механохимической активации в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признак, указывающий, что «дополнительно используют золу уноса» позволяет достичь снижения расхода портландцемента путем замены его активированным наполнителем техногенного происхождения.

Признак, указывающий, что «дополнительно используют гиперпластификатор», позволяет улучшить реологические характеристики бетонной смеси.

Признак, указывающий, что «…в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства…», позволяет снизить себестоимость производства бетона за счет применения дешевых отходов производства.

Признак, указывающий, что «…все сухие компоненты подвергают механической активации…», позволяет усилить реакционную способность активированного вещества без изменений его состава или строения.

Признаки, указывающие на соотношение масс, направлены на оптимизацию состава, направленную на достижение технического результата.

Электропроводящий бетон готовят следующим образом.

Из углеродистого шлама в ходе тепловой обработки удаляют избыточную влагу до 0,5%. Добавляют остальные сухие компоненты (табл.1) и совместно измельчают в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг, что способствует увеличению его реакционной способности и эффективности применения за счет механохимической активации. Полученную сухую смесь затворяют водой при водовяжущем отношении 0,42 (табл.2).

Компоненты электропроводящего бетона

Наименование компонентов Назначение в составе бетонной смеси Массовая доля, % Нормативный документ
Портландцемент ЦЕМ I 42,5Н вяжущее 10-14 ГОСТ 31108-2003
Зола уноса ТЭЦ, буроугольная, основные (О) -, содержащие оксид кальция более 10% по массе регулирование структурообразования 13-18 ГОСТ 25818-91
Термозитовый песок заполнитель 14-19 ГОСТ 8736-2014
Углеродистый шлам алюминиевого производства электропроводящий компонент 11,8-15,8 ТУ 1914-99-011-97
Гиперпластификатор поликарбоксилатный сухой пластифицирующий химический модификатор 0,2 EN 934-2-2009
Вода затворение вяжущего 42 ГОСТ 23732-2011

Составы и свойства электропроводящих бетонов

Таким образом, предлагаемый состав электропроводящего бетона имеет следующие преимущества по сравнению с известными:

— повышены прочностные характеристики более чем в 2 раза при одновременном увеличении электропроводности до 2 раз по сравнению с прототипом;

— экономический эффект достигается за счет снижения расхода портландцемента путем замены его активированным наполнителем техногенного происхождения и применения в рецептуре термозитового песка и углеродистого шлама алюминиевого производства.

Особенности резистивных материалов обуславливают использование их модификаций для создания нагревательных элементов и конструкций объемного и пленочного типов, применяющихся в электрических системах для теплофикации в сфере общественного и промышленного строительства, жилищно-коммунальном и сельском хозяйстве, энергетике и т.д. Применение углеродсодержащих компонентов позволит обеспечить стабильность электрических свойств.

1. Электропроводный бетон, полученный из сырьевой смеси, содержащей портландцемент, песок, воду и углеродсодержащий компонент, отличающийся тем, что в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства, кроме того, в нем дополнительно используют золу уноса и гиперпластификатор, при следующем соотношении компонентов, мас. %: портландцемент 10-14; термозитовый песок 14-19; зола уноса 13-18; углеродистый шлам алюминиевого производства 11,8-15,8; гиперпластификатор 0,2; вода 42.

2. Электропроводный бетон по п. 1, отличающийся тем, что все сухие компоненты подвергают механохимической активации в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг.

Почему бьёт током?

  • Facebook
  • Вконтакте
  • Twitter
  • Google

  • Facebook
  • Вконтакте
  • Twitter
  • Google

Никакого «битья» током нет. Есть ток — течение заряженных частиц.

Вред наносимый током зависит от того насколько сильное течение, измеряется эта величина в Амперах.
Чем больший ток пройдет тем сильнее вред.

Читайте также  Как подготовить бетонный пол под линолеум?

Сила тока проходящего через тело — зависит от напряжения и сопротивления тела.
В описанной вами ситуации ток должен идти не только через тело но и через бетон.
Поэтому тут нужно учитывать сопротивление бетона, сопротивление в местах стыков — наиболее плохой контакт и как следствие повышенное сопротивление как раз в местах стыков -ноги на бетоне, кусок бетона в руке.

почему в первом случае бьёт током, если бетон не проводит электричество

Бетон является диэлектриком — веществом очень плохо проводящим ток.
Но это не значит что он не проводит ток — проводит, но не очень хорошо , хотя в некоторых ситуациях вполне достаточно.
К тому же в разных ситуациях его электропроводность может меняться.

Вот к примеру вода- отличный диэлектрик не хуже бетона.
А как показывает практика зачастую она очень неплохо проводит ток 🙂

  • Facebook
  • Вконтакте
  • Twitter
  • Google

Чем больший ток пройдет тем сильнее вред.

С чем большей силой ток пройдет, тем больше повреждения

Сила тока проходящего через тело — зависит от напряжения и сопротивления тела.

и от изначальной силы тока, который имеет источник тока?

Вцелом, магия не обьяснена

и от изначальной силы тока, который имеет источник тока?

Скорее дело в различиях контакта человек-бетон.
1. Если стоит босиком на бетоне то площадь контакта большая, и наличие пота с солями вызывает хорошую проводимость.
2. Пальцы рук потеют меньше, да и площадь контакта в сотню раз меньше.

Для чистоты эксперимента нужно попробовать схватиться полной поверхностью ладоней за бетонный столб, который выше обмотан проводом под напряжением. / Это шутка, а не призыв к действию )) /

Про емкость еще забыли -)

Конструкция человек на изолирующих подошвах на бетоном полу — вполне себе конденсатор. Ну а в «проводниках» в процессе заряда протекает ток. чем больше емкость — тем больше интеграл тока по времени = [деструктивная] работа -)

Никакого «битья» током нет. Есть ток — течение заряженных частиц.

Артем, без обид, но ты как 13-и летняя девочка. Есть битье током. Если не веришь, то сунь пальцы в розетку. А как ты со своих 13 лет это называешь — это все-равно. Во всем мире это принято называть «битье током».

Это был риторический ответ.

mureevms: Если сунуть пальцы в розетку ничего не произойдет — пальцы не достанут до металлических частей, розетки специально так сконструированы.

По поводу битья током — есть поражение током, разрушения вызванные проходящим током. Это не удары, не битье, это банальный нагрев.
Так же есть такая штука как сокращение мышц при прохождении через них тока, это еще Луиджи Гальвани подметил.
Поэтому если ток будет переменным как в бытовой сети — мышцы будут сокращаться с частотой 50Гц и человек будет довольно заметно трястись.

АртемЪ: Очень плохо объяснили. Ибо вода — диэлектрик. В любом виде диэлектрик. Хоть пар, хоть лёд. Хоть жидкость. Хоть небо. А вот солёная вода — очень даже электролит, очень даже проводник. Да, сопротивление у обычной речной воды будь здоров, но ток она проводит. Равно и как и бутилированная вода. А вот дистилят не проводит ток. Вот хоть убей, не будет он проводить пока не посолишь. Ну это так, придирки.

И да, убивает не ток, а мощность. Под некоторым «но», дело в том, что даже разряд невысокой мощности может остановить сердце. C’est la vie. В остальном, если имеется ввиду именно обгореть, то без мощности здесь не обойтись, а зависит она, внезапно, источника. То есть, если взять генератор на пару киловатт, прикрутить к нему хомяка с колесом, то как ни берись за оголённые провода, ничего не будет. Вернее будет: или хомяк не сможет колесо прокрутить или напряжение резко упадёт почти до нуля. Поэтому, критичным, является минимизация времени контакта, к слову. Путаница связана с тем, что всё со всем связано, ибо напряжение подаётся источником, а ток зависит от цепи. Да и нагрузить несколько киловатт на розетку современным электростанциям ничего не стоит, они даже не почувствуют, что человека убили 😉

Ответ на вопрос намного проще — заряд. Да, человек имеет ёмкость. Конденсатор он образует поскольку постольку, ибо для нормальный конденсатор это всё таки тонкий диэлектрик, а между бетоном и землёй довольно много места. Нет, бетон тут не причём, просто в человеке оказывается мало заряда, а на проводнике его много. В момент контакта он резко заряжает человека, а с точки зрения физики возникает ток утечки, от чего внезапно становится немного больно, но в целом это лишь сиюминутная радость. Разрядки практически не происходит, то есть заряд колебаться будет, но очень слабо, так как бетон является плохой землёй.

Вот что точно не стоит, так это действительно образовывать конденсатор. То есть браться двумя руками за концы. Не самая лучшая идея, тем более что кондер может и пробить =)

АртемЪ: Гхм. Не знаю, какой смысл путать тёплое с мягким. Ещё раз. Вода — диэлектрик и точка. Ну не проводит она ток. Проводят ионы солей, растворённых в воде. Это концептуально, мы не во дворе болтаем о физике 7 класса, вроде бы ресурс должен помогать, а не загонять в угол.

От того, что цепь с переменным током особо ничего не меняется. Переменный ток это лишь качественный параметр бытовой и промышленной сетей, время контакта убивает, потому что тепло выделяется по закону Джоуля-Ленца. А каша в том, что все эти величины весьма зависимы. Но я не знаю как по другому объяснить тот факт, что убивает именно тепло.

Deerenaros: Я вроде русским языком написал что вода является диэлектриком.
И тут приходите вы и начинаете доказывать что она является диэлектриком.
Зачем доказывать мне то что я и так знаю?

Но я не знаю как по другому объяснить тот факт, что убивает именно тепло.

Но это не значит что он не проводит ток — проводит, но не очень хорошо , хотя в некоторых ситуациях вполне достаточно.

Вот к примеру вода- отличный диэлектрик не хуже бетона.
А как показывает практика зачастую она очень неплохо проводит ток 🙂

А как показывает практика зачастую она очень неплохо проводит ток 🙂

весьма и весьма скверно, потому что для детской научно-популярной телепередачи это может быть ОК, ибо объяснять ребёнку про кислоты, соли, ионы, растворители — немного не есть годная идея. Но на таком ресурсе, как по мне, непозволительная роскошь прятать чрезвычайно важные детали в завуалированных «как показывает практика». Нет, практика не это показывает. Это безграмотно.

И ладно бы просто задели. Так имеете свойство продолжать.

И да, убивает не ток, а мощность. Под некоторым «но», дело в том, что даже разряд невысокой мощности может остановить сердце. C’est la vie.

Человеческий организм управляется электрическими импульсами.

Пропустите ток через мышцу и она сократится.

Пропустите ток через сердечную мышцу она тоже сократится.

Ну и не только сердце, там еще и на нервную систему действует.

И тут тепло никакого влияния не оказывает.

Вообще говоря, если тепло не разрушило структуру мозга (а такое весьма может быть), тогда максимум что можно обрести — это амнезию (и то, возможно здесь также теплота разрушает, ибо современные ЭСТ-аппараты, генерирующие короткие импульсы реже вызывают потерю памяти).

Короче, не знаю к чему всё это было. Я банально указал на ошибку, тогда как вы ещё раз дважды ошиблись. После чего снова дважды ошиблись, дважды серьёзно недоговорили (возможно и к лучшему), и один раз пришли к неправильным выводам. К чему это? Надеюсь, вопрос риторический.

организм не управляется электрическими импульсами.

Если через мышцу пропустить ток — она сократится, это предсказуемое действие, следовательно можно управлять мышцей пропуская через нее ток. Поэтому — организм человека прекрасно управляется электрическими импульсами.

Размешивая соль в воде мы больше не имеем воду

Что за чушь? Вы слышали что во всех океанах электролит, как и в реках, озерах и прочих водоемах? И продают конечно же бутилированный электролит для питья?
Вода — везде вода. Просто недостаточно чистая химически, и в некоторых ситуациях можно сказать что она является электролитом, но тем не менее это вода. И она проводит ток.
Хотя чистая вода ток не проводит — но такой воды к сожалению в природе не встретишь, да и в лаборатории приготовить крайне сложно — на грани фантастики, ибо вода является отличным растворителем.

Она не сократится. А пустится в судороги

Согласно словарю судороги это непроизвольные сокращения мышц;
Поэтому она сократится, если ток пропустить несколько раз — она сократится несколько раз, вот тогда можно сказать это будут судороги.

Читайте также  Утеплить второй этаж деревянного дома своими руками

В итоге — вы пытаетесь придираться к словам, но у вас это плохо получается.

Проводит ли бетон электрический ток?

В настоящее время бетонные и железобетонные конструкции находят все более широкое применение в различных областях техники. Новые области применения бетона потребовали и новых зйаний о его свойствах. Наряду с изучением физико-механических свойств сейчас стали уделять большое внимание электротехническим свойствам бетона и, как следствие этого, были начаты работы по созданию бетонов с заранее заданными электрическими характеристиками.

Во многих странах ведутся работы по созданию специальных бетонов с заданными электрическими свойствами, а также по исследованию и использованию электрических свойств обычных строительных бетонов. Интерес к этой работе обусловлен большими перспективами, которые откроются перед строительством, электроэнергетикой и другими отраслями техники в том случае, если будут найдены надежные пути превращения бетона в электропроводящий материал.

Изучение электрических свойств бетонов и создание новых типов электропроводящих бетонов идет в двух направлениях.

1.Создание электропроводящих бетонов с малым удельным электрическим сопротивлением и стабильностью электрических параметров во времени при изменяющихся условиях эксплуатации.

2.Изучение электрических свойств существующих бетонов и создание бетонов с улучшенными электроизоляционными свойствами: высоким удельным электрическим сопротивлением, малым значением диэлектрических потерь и диэлектрической проницаемости, высокой электрической прочностью.

Разделение материалов на конструктивные и электротехнические существует во всех отраслях техники. Это объясняется тем, что известные электротехнические материалы по технико-экономическим показателям, а иногда из-за специфических физико-механических свойств, не могут быть использованы как конструктивные. Попытки использовать электроизоляционные или электропроводящие свойства обычного бетона делались и раньше, однако все они, как правило, неудачны, так как бетон не обладал стабильными электрическими свойствами, а регулировать их в заданных границах не представлялось возможным. Поэтому создание на основе обычного бетона материала, обладающего высокими конструктивными и необходимыми заранее заданными электрическими свойствами, является задачей большого народнохозяйственного значения.

Обычный бетон в определенных температурно-влажностных условиях обладает способностью проводить электрический ток, однако это его свойство является не стабильным. Кроме того, в большинстве случаев электропроводность обычного бетона рассматривается как вредная, так как с ней связана электрокоррозия арматуры в железобетонных конструкциях под воздействием блуждающих токов.

В ряде случаев эту способность пытаются использовать для целей заземления некоторых строительных конструкций, работающих под воздействием электрического тока. Последнее возможно лишь в том случае, если бетон будет стабильным проводником тока. Однако при сезонных колебаниях температуры и влажности электрическое сопротивление обычного бетона меняется на 6—8 порядков. Объясняется это тем, что он обладает ионным характером проводимости. При насыщении бетона водой происходит переход легкорастворимых компонентов цементного камня в жидкую фазу и он становится полупроводником с низким удельным электрическим сопротивлением. Высушивание же бетона приводит к росту его сопротивления.

Предлагались различные способы улучшения электрических свойств бетона. Большинство из них основывалось на том, чтобы воспрепятствовать проникновению влаги внутрь бетона или уменьшить ее влияние. Разработанный во Франции так называемый «изоляционный бетон Ламберта» приготавливался на водных битумных эмульсиях. Заполняя поры, образующиеся в теле бетона, битум затруднял его увлажнение, стабилизируя тем самым электрическое сопротивление. Бетон, предварительно высушенный, а затем покрытый или пропитанный с поверхности различными изоляционными составами, применяется во многих странах для изготовления токоограничивающих бетонных реакторов. В целях увеличения электрического сопротивления бетона, предназначенного для изготовления железобетонных шпал, в его состав вводились ионно-обменные смолы, которые связывали образующиеся при увлажнении бетона свободные ионы. Уменьшение концентрации ионов в жидкой фазе приводило к снижению электропроводности как самой жидкой фазы, так и бетона в целом. Наконец, высказывались предложения о получении изоляционных бетонов на основе полной замены цементной связки на полимерную. В зарубежной практике наибольшее распространение получил способ использования полимерных связок для получения электро-изоляцонных пластобетонов, в частности эпоксидного бетона.

Попытки использовать проводящие свойства бетона во влажном состоянии имели ограниченный успех. Объясняется это тем, что влажный бетон, с одной стороны, не выдерживал импульсов тока, с другой — при низких температурах, когда вода, находящаяся в бетоне, замерзала, он становился плохим проводником.

Характерная особенность большинства упомянутых выше работ заключалась в том, что бетон рассматривался с электрической точки зрения как нечто единое без достаточного учета его химического и фазового состава, микро- и макроструктуры, особенностей физико-химических процессов, приводящих к образованию его как материала.

В основу ведущихся исследований положен иной принцип получения как токопроводящих, так и изоляционных бетонов. Для изоляционных бетонов это, во-первых, комплексное изучение свойств отдельных компонентов цементного вяжущего и различных их сочетаний, что позволило выделить те из них, которые бы в наибольшей степени приближались к диэлектрикам и, во-вторых, установление роли пористости бетона и определение границы, опасной в электрическом отношении. Для электропроводящих бетонов это, во-первых, отыскание токопроводящёй добавки, изменяющей свойства бетона в сторону повышения его электропроводности и, во-вторых, получение на ее основе композиционного материала — специального бетона со всеми характерными качествами проводника электрического тока.

В результате этих работ был создан электропроводящий бетон, названный бетэлом, обладающий, наряду с конструктивными свойствами, способностью проводить электрический ток.

На основании теоретических и экспериментальных исследований было установлено, что изменение в нужном направлении фазового состава и структуры цементного камня и бетона, а также использование токопроводящих добавок является одним из основных путей получения бетонов с заданными электрическими свойствами. Этого следует добиваться не только за счет выбора исходного вяжущего, заполнителя и добавок, но и создания оптимального с точки зрения электрических свойств режима твердения. В ранее выполненных работах в нашей стране и за рубежом первое учитывалось недостаточно, а второе не принималось во внимание вообще.

Связка, используемая в бетоне, может быть самой различной и в зависимости от ее вида различают следующие типы бетона: пластобетона, полимерцементный бетон и бетон на цементном вяжущем. Если проанализировать их с точки зрения электрической, конструктивной и экономической эффективности, то можно сказать, что наиболее подходящим для электрических целей является бетон на цементном вяжущем, так как он имеет, помимо высоких конструктивных и технико-экономических показателей, достаточно хорошую короностойкость и дугостойкость. Поэтому работа по применению бетона для электротехнических целей и должна развиваться в направлении использования обычного цементного бетона с учетом различных методов, улучшающих его электрические свойства.

Предварительные исследования прочностных и электрических свойств бетэла показали, что он может быть получен с большим диапазоном электрических и механических свойств:

Удельное электрическое сопротивление, ом-см10—104

Прочность на сжатие, кг/см 2 85—250

Прочность на растяжение, кг/см 2 15—30

Объемный вес, г/см 2 1,8—2,2

Допустимая плотность тока, а/см 2 10—0,1

Рабочий диапазон температуры, ° С—60°—I-150°

Рабочая температура перегрева, ° С120

Допустимая скорость перегрева, ° С/сек200

Удельная разрушающая энергия при однократном включении токовой нагрузки, вт-сек/см 3 230—300

Удельный объем, необходимый для рассеивания энергии 1 Мвт-сек при перегреве на 1 ° С, 0,57

Удельная теплоемкость, ккал/г-град0,22

Электропроводящие бетоны относятся к числу дешевых и доступных материалов. Их стоимость лишь в некоторых случаях будет незначительно превышать стоимость обычных строительных бетонов. Это объясняется тем, что при изготовлении электропроводящих бетонов и конструкций на их основе используются распространенные составляющие — вяжущие, добавки, заполнители, а также в основном освоенные промышленностью технологические процессы.

Бетэл может найти широкое применение в области гражданского и сельскохозяйственного строительства. Панели стен и перекрытий, полы, кровли с внутренним водостоком, фундаменты опор линий ЛЭП, — вот далеко не полный перечень конструкций из него.

Бетэл как всякий проводник при прохождении электрического тока нагревается. Это позволяет широко использовать его для создания электроотопительных элементов зданий. В качестве нагревательных элементов могут быть использованы без больших изменении конструкций и технологической оснастки применяемые в настоящее время стеновые панели и плиты междуэтажных перекрытий. Конструкции из электропроводящего бетона позволят отказаться от сложных существующих систем отопления, обеспечат возможность создания индивидуального микроклимата в жилых помещениях, позволят предложить ряд принципиально новых решений отдельных узлов, обеспечат сокращение сроков монтажа зданий, приведут к снижению целого ряда эксплуатационных расходов, особенно в условиях сурового климата.